Physics Lists

D. Wright, G. Folger, V. Ivantchenko, A. Dotti 16th Geant4 Collaboration Meeting

Automatic Documentation

History

- For several years there have been requests from users and collaborators to better document the contents of our physics lists
 - Especially the hadronic part
- Two years ago, a physics list documentation task force was created to address these requests
 - a distillation of these requests resulted in requirements for physics list documentation

Requirements (I)

- Each reference physics list should have a document describing:
 - constituent processes, models, cross sections
 - the energies and particles for which they are valid
 - the cases in which the physics list should be used
- The document should be easily generated by collaborators or users
 - an official copy of it should be part of the online Geant4 documentation
 - it should be regenerated with each Geant4 release

Requirements (2)

- Each component process, model and cross section class should be accompanied by a brief description
 - description should be written in "plain language", so that it can be understood by non-experts
- Each description must be linked to the particle as it appears in the physics list
- All lists and descriptions must be autogenerated
- Descriptions must be available for the generation of other documents if needed
 - there should be no duplication of descriptions

Implementation (hadronic part)

A Description() method is to be added to each process, model and cross section class

- this method to write an html description file
- call to this method chosen by environment variable
- G4HadronicProcessStore::PrintHtml()
 - sorts through all the processes, models and cross sections assigned to a particle
 - collects the description files written by Description()
- G4HadronicProcessStore::DumpHtml()
 - writes the "PhysicsList".html file to a specified directory

Usage

Currently the user must

- specify the name of the desired physics list in an environment variable
- specify in an environment variable the path to a directory where all process, model, cross section description files will be dumped
- run the named physics list in an example or other application
- For example, if FTFP_BERT is specified, the file FTFP_BERT.html will be created

Physics List Documentation Sample

Summary of Hadronic Processes, Models and Cross Sections for Physics List FTFP_BERT

proton

Physics List Documentation Sample

neutron

```
process : hadElastic
 o models:
     hElasticCHIPS from 0 GeV to 100000 GeV
 o cross sections:

    CHIPSElasticXS from 0 GeV to 100000 GeV

process : NeutronInelastic
 o models :
     FTFP from 4 GeV to 100000 GeV
     ■ BertiniCascade from 0 GeV to 5 GeV
 o cross sections:

    G4CrossSectionPairGG from 0 GeV to 100000 GeV

process : nCapture
 o models:

    G4LCapture from 0 GeV to 20000 GeV

 o cross sections :
     GheishaCaptureXS from 0 GeV to 100000 GeV
process: nFission
 o models :

    G4LFission from 0 GeV to 20000 GeV

 o cross sections:

    GheishaFissionXS from 0 GeV to 100000 GeV
```

Physics List Documentation Sample

 pi+ process : hadElastic o models : hElasticLHEP from 0 GeV to 1 GeV hElasticGlauber from 1 GeV to 100000 GeV o cross sections: Barashenkov-Glauber-Gribov from 0 GeV to 100000 GeV process : PionPlusInelastic o models : FTFP from 4 GeV to 100000 GeV ■ BertiniCascade from 0 GeV to 5 GeV o cross sections: ■ G4CrossSectionPairGG from 0 GeV to 100000 GeV · piprocess : hadElastic o models : hElasticLHEP from 0 GeV to 1 GeV hElasticGlauber from 1 GeV to 100000 GeV o cross sections: Barashenkov-Glauber-Gribov from 0 GeV to 100000 GeV process : PionMinusInelastic o models : FTFP from 4 GeV to 100000 GeV BertiniCascade from 0 GeV to 5 GeV o cross sections: G4CrossSectionPairGG from 0 GeV to 100000 GeV

EM Constructors

EM Physics List constructors for High Energy Physics for 9.5

- Used by Geant4 validation suites
 - Are robust due to intensive tests by Geant4 team
 - well known precision and limitations
- May be used in any application domain

Constructor	Components	Comments
G4EmStandardPhysics	Default (QGSP_BERT, FTFP_BERT)	ATLAS, and other HEP productions, other applications
G4EmStandardPhysics_option1	Fast due to simple step limitation, cuts used by photon processes, WentzelVI model of multiple scattering for muons and hadrons (QGSP_BERT_EMV,)	CMS and LHCb production, good for crystals not good for sampling calorimeters
G4EmStandardPhysics_option2	Experimental: WentzelVI model of multiple scattering (QBBC,)	Used for testing of new models

Combined EM Physics List constructors for 9.5

- For today focus more to precision than to maximum simulation speed
- Ion stopping model based on the ICRU'73 data
- Strong step limitation from ionisation and multiple scattering per particle type
- UrbanMscModel95 for e+,e- (Goudsmith-Saunderson needs improvements)
- Recommended for hadron/ion therapy, space applications

Constructor	Components	Comments
G4EmStandardPhysics_option3	Urban MSC model (QGSP_BIC_EMY, Shielding)	Proton/ion therapy
G4EmLivermorePhysics	Livermore models for γ, e ⁻ below 1 GeV, Standard models above 1 GeV	Livermore low-energy electron and gamma transport
G4EmPenelopePhysics	Livermore models for γ, e [±] below 1 GeV, Standard models above 1 GeV	Penelope low-energy e [±] and gamma transport

Physics List Developments

- Stability for supported lists
- Attempt to **replace weak models** or cross sections by better alternatives
 - Based on validation results
 - CPU performance always considered
- Emphasis shifting towards FTF based lists
 - Integrate recent developments, try options
 - Attempts to reduce dependence on CHIPS components (starting)
 - Need to have stability in lists used in production by LHC

Reduce Use of Parametrised models

- "Misc" particles
 - Lambda, Sigma+/-, Xi-/0, Omega-
- FTF lists switched to use Bertini & FTF for these
- QGS use CHIPS (unchanged)
- QGSP_FTFP_BERT, FTFP_BERT are free of parameterised modeling

Add interactions for anti-nuclei

- Using new cross sections
 G4ComponentAntiNuclNuclearXS developed by
 A.Galoyan and V.Uzhinsky
- Final state generation by FTF